印制電路板,是電子元器件電氣連接的提供者。它的發展已有100多年的歷史了;它的設計主要是版圖設計;采用電路板的主要優點是大大減少布線和裝配的差錯,提高了自動化水平和生產勞動率。
印刷電路板作為重要的電子部件,是電子元器件的支撐體。由于其在電子元器件領域的重要作用,因此被許多人成為“電子航母”。
現在,通信產品、計算機和其他幾乎全部的電子產品,都使用了印刷電路。印刷電路技術的發展和完善,為改變世界面貌的發明——集成電路的問世,創造了條件。隨著科學技術的發展,印刷電路板被廣泛應用于軍工、通訊、醫療、電力、汽車、工業控制、智能手機、可穿戴等高新技術領域。
印刷電路的發明
印刷電路的發明人是奧地利的保·艾斯勒。艾斯勒是一名電氣工程師,學習過印刷技術。他在制造電路板時,仿照印刷業中的制版方法先畫出電子線路圖,再把線路圖蝕刻在一層銅箔的絕緣板上,不需要的銅箔部分被蝕刻掉,只留下導通的線路,這樣,電子元件就通過銅箔形成的電路連接起來。1936年,艾斯勒用這種方法成功地裝配了一臺收音機。
艾斯勒的發明受到美國軍方的重視,于是印刷電路首先被使用在近發引信上。近發引信是第二次世界大戰期間美國物理學家范艾倫發明的一種無線電引信,它安裝在高射炮彈上,使用時發射無線電波,只要目標進入殺傷范圍之內,反射的無線電波就能使炮彈引爆。這種引信要求把許多電子元件緊湊地安裝在體積很小的設備里,所以采用了印刷電路。盟軍使用的裝有近發引信的高射炮彈,給德國飛機以毀滅性的打擊,印刷電路從此為世人所知。
印刷電路的意義
印刷電路的好處是用不著在電路板上一次一次地進行焊接,免去了大量復雜的手工接線操作,而且能達到高精度,使電路板的生產效率、穩定性和利潤空間大大提高。印刷業可以將大的圖片縮小制版,印刷電路同樣也可以把電子線路圖縮小制版,從而為集成電路的產生準備了條件。今天,所有的計算機以及所有的電子產品,都使用了印刷電路。
印刷電路是把導體圖形用印制手段蝕刻或感光在一塊絕緣基板上,是使電子元件互相連接的一種電子電路。它已經可以使用自動繪圖儀迅速地把導體圖形直接描繪在玻璃版上制版,然后印刷出來。印刷電路使電子設備的批量生產變得簡單易行,使電子設備性能一致,質量穩定,結構緊湊。如果沒有印刷電路工藝,50年代以來的電子設備就不可能取得這樣大的進展。
線路板從發明至今,其歷史60余年。歷史表明:沒有線路板,沒有電子線路,飛行、交通、原子能、計算機、宇航、通信、家電……這一切都無法實現。
道理是容易理解的。芯片,IC,集成電路是電子信息工業的糧食,半導體技術體現了一個國家的工業現代化水平,引導電子信息產業的發展。而半導體(集成電路、 IC)的電氣互連和裝配必須靠線路板。
印刷電路板的種類
按照線路板層數可分為單面板、雙面板、四層板、六層板以及其他多層線路板。
單面板
在最基本的PCB上,零件集中在其中一面,導線則集中在另一面上。因為導線只出現在其中一面,所以這種PCB叫作單面板(Single-sided)。因為單面板在設計線路上有許多嚴格的限制(因為只有一面,布線間不能交叉而必須繞獨自的路徑),所以只有早期的電路才使用這類的板子。
雙面板
這種電路板的兩面都有布線,不過要用上兩面的導線,必須要在兩面間有適當的電路連接才行。這種電路間的“橋梁”叫做導孔(via)。導孔是在PCB上,充滿或涂上金屬的小洞,它可以與兩面的導線相連接。因為雙面板的面積比單面板大了一倍,雙面板解決了單面板中因為布線交錯的難點(可以通過導孔通到另一面),它更適合用在比單面板更復雜的電路上。
多層板
為了增加可以布線的面積,多層板用上了更多單或雙面的布線板。用一塊雙面作內層、二塊單面作外層或二塊雙面作內層、二塊單面作外層的印刷線路板,通過定位系統及絕緣粘結材料交替在一起且導電圖形按設計要求進行互連的印刷線路板就成為四層、六層印刷電路板了,也稱為多層印刷線路板。板子的層數并不代表有幾層獨立的布線層,在特殊情況下會加入空層來控制板厚,通常層數都是偶數,并且包含最外側的兩層。大部分的主機板都是4到8層的結構,不過技術上理論可以做到近100層的PCB板。大型的超級計算機大多使用相當多層的主機板,不過因為這類計算機已經可以用許多普通計算機的集群代替,超多層板已經漸漸不被使用了。因為PCB中的各層都緊密的結合,一般不太容易看出實際數目,不過如果仔細觀察主機板,還是可以看出來。
多層板所用的元件多為貼片式元件,其特點是:
1、與集成電路配合使用,可使整機小型化,減少整機重量;
2、提高了布線密度,縮小了元器件的間距,縮短了信號的傳輸路徑;
3、減少了元器件焊接點,降低了故障率,
4、增設了屏蔽層,電路的信號失真減少;
5、引入了接地散熱層,可減少局部過熱現象,提高整機工作的可靠性
印刷電路板的制作工藝過程
印刷電路板的制作非常復雜, 這里以四層印制板為例感受PCB是如何制造出來的。
層壓
這里需要一個新的原料叫做半固化片,是芯板與芯板(PCB層數>4),以及芯板與外層銅箔之間的粘合劑,同時也起到絕緣的作用。
下層的銅箔和兩層半固化片已經提前通過對位孔和下層的鐵板固定好位置,然后將制作好的芯板也放入對位孔中,最后依次將兩層半固化片、一層銅箔和一層承壓的鋁板覆蓋到芯板上。
將被鐵板夾住的PCB板子們放置到支架上,然后送入真空熱壓機中進行層壓。真空熱壓機里的高溫可以融化半固化片里的環氧樹脂,在壓力下將芯板們和銅箔們固定在一起。
層壓完成后,卸掉壓制PCB的上層鐵板。然后將承壓的鋁板拿走,鋁板還起到了隔離不同PCB以及保證PCB外層銅箔光滑的責任。這時拿出來的PCB的兩面都會被一層光滑的銅箔所覆蓋。
鉆孔
要將PCB里4層毫不接觸的銅箔連接在一起,首先要鉆出上下貫通的穿孔來打通PCB,然后把孔壁金屬化來導電。
用X射線鉆孔機機器對內層的芯板進行定位,機器會自動找到并且定位芯板上的孔位,然后給PCB打上定位孔,確保接下來鉆孔時是從孔位的正中央穿過。
將一層鋁板放在打孔機機床上,然后將PCB放在上面。為了提高效率,根據PCB的層數會將1~3個相同的PCB板疊在一起進行穿孔。最后在最上面的PCB上蓋上一層鋁板,上下兩層的鋁板是為了當鉆頭鉆進和鉆出的時候,不會撕裂PCB上的銅箔。
在之前的層壓工序中,融化的環氧樹脂被擠壓到了PCB外面,所以需要進行切除??磕c姶哺鶕CB正確的XY坐標對其外圍進行切割。
孔壁的銅化學沉淀
由于幾乎所有PCB設計都是用穿孔來進行連接的不同層的線路,一個好的連接需要25微米的銅膜在孔壁上。這種厚度的銅膜需要通過電鍍來實現,但是孔壁是由不導電的環氧樹脂和玻璃纖維板組成。
所以第一步就是先在孔壁上堆積一層導電物質,通過化學沉積的方式在整個PCB表面,也包括孔壁上形成1微米的銅膜。整個過程比如化學處理和清洗等都是由機器控制的。
固定PCB
清洗PCB
運送PCB
外層PCB布局轉移
接下來會將外層的PCB布局轉移到銅箔上,過程和之前的內層芯板PCB布局轉移原理差不多,都是利用影印的膠片和感光膜將PCB布局轉移到銅箔上,唯一的不同是將會采用正片做板。
內層PCB布局轉移采用的是減成法,采用的是負片做板。PCB上被固化感光膜覆蓋的為線路,清洗掉沒固化的感光膜,露出的銅箔被蝕刻后,PCB布局線路被固化的感光膜保護而留下。
外層PCB布局轉移采用的是正常法,采用正片做板。PCB上被固化的感光膜覆蓋的為非線路區。清洗掉沒固化的感光膜后進行電鍍。有膜處無法電鍍,而沒有膜處,先鍍上銅后鍍上錫。退膜后進行堿性蝕刻,最后再退錫。線路圖形因為被錫的保護而留在板上。
將PCB用夾子夾住,將銅電鍍上去。之前提到,為了保證孔位有足夠好的導電性,孔壁上電鍍的銅膜必須要有25微米的厚度,所以整套系統將會由電腦自動控制,保證其精確性。
外層PCB蝕刻
接下來由一條完整的自動化流水線完成蝕刻的工序。首先將PCB板上被固化的感光膜清洗掉。然后用強堿清洗掉被其覆蓋的不需要的銅箔。再用退錫液將PCB布局銅箔上的錫鍍層退除。清洗干凈后4層PCB布局就完成了。
電子元器件領域的“航母”——印刷電路板變遷
時間:2019-05-21
印制電路板,是電子元器件電氣連接的提供者。它的發展已有100多年的歷史了;它的設計主要是版圖設計;采用電路板的主要優點是大大減少布線和裝配的差錯,提高了自動化水平和生產勞動率。
印刷電路板作為重要的電子部件,是電子元器件的支撐體。由于其在電子元器件領域的重要作用,因此被許多人成為“電子航母”。
現在,通信產品、計算機和其他幾乎全部的電子產品,都使用了印刷電路。印刷電路技術的發展和完善,為改變世界面貌的發明——集成電路的問世,創造了條件。隨著科學技術的發展,印刷電路板被廣泛應用于軍工、通訊、醫療、電力、汽車、工業控制、智能手機、可穿戴等高新技術領域。
印刷電路的發明
印刷電路的發明人是奧地利的保·艾斯勒。艾斯勒是一名電氣工程師,學習過印刷技術。他在制造電路板時,仿照印刷業中的制版方法先畫出電子線路圖,再把線路圖蝕刻在一層銅箔的絕緣板上,不需要的銅箔部分被蝕刻掉,只留下導通的線路,這樣,電子元件就通過銅箔形成的電路連接起來。1936年,艾斯勒用這種方法成功地裝配了一臺收音機。
艾斯勒的發明受到美國軍方的重視,于是印刷電路首先被使用在近發引信上。近發引信是第二次世界大戰期間美國物理學家范艾倫發明的一種無線電引信,它安裝在高射炮彈上,使用時發射無線電波,只要目標進入殺傷范圍之內,反射的無線電波就能使炮彈引爆。這種引信要求把許多電子元件緊湊地安裝在體積很小的設備里,所以采用了印刷電路。盟軍使用的裝有近發引信的高射炮彈,給德國飛機以毀滅性的打擊,印刷電路從此為世人所知。
印刷電路的意義
印刷電路的好處是用不著在電路板上一次一次地進行焊接,免去了大量復雜的手工接線操作,而且能達到高精度,使電路板的生產效率、穩定性和利潤空間大大提高。印刷業可以將大的圖片縮小制版,印刷電路同樣也可以把電子線路圖縮小制版,從而為集成電路的產生準備了條件。今天,所有的計算機以及所有的電子產品,都使用了印刷電路。
印刷電路是把導體圖形用印制手段蝕刻或感光在一塊絕緣基板上,是使電子元件互相連接的一種電子電路。它已經可以使用自動繪圖儀迅速地把導體圖形直接描繪在玻璃版上制版,然后印刷出來。印刷電路使電子設備的批量生產變得簡單易行,使電子設備性能一致,質量穩定,結構緊湊。如果沒有印刷電路工藝,50年代以來的電子設備就不可能取得這樣大的進展。
線路板從發明至今,其歷史60余年。歷史表明:沒有線路板,沒有電子線路,飛行、交通、原子能、計算機、宇航、通信、家電……這一切都無法實現。
道理是容易理解的。芯片,IC,集成電路是電子信息工業的糧食,半導體技術體現了一個國家的工業現代化水平,引導電子信息產業的發展。而半導體(集成電路、 IC)的電氣互連和裝配必須靠線路板。
印刷電路板的種類
按照線路板層數可分為單面板、雙面板、四層板、六層板以及其他多層線路板。
單面板
在最基本的PCB上,零件集中在其中一面,導線則集中在另一面上。因為導線只出現在其中一面,所以這種PCB叫作單面板(Single-sided)。因為單面板在設計線路上有許多嚴格的限制(因為只有一面,布線間不能交叉而必須繞獨自的路徑),所以只有早期的電路才使用這類的板子。
雙面板
這種電路板的兩面都有布線,不過要用上兩面的導線,必須要在兩面間有適當的電路連接才行。這種電路間的“橋梁”叫做導孔(via)。導孔是在PCB上,充滿或涂上金屬的小洞,它可以與兩面的導線相連接。因為雙面板的面積比單面板大了一倍,雙面板解決了單面板中因為布線交錯的難點(可以通過導孔通到另一面),它更適合用在比單面板更復雜的電路上。
多層板
為了增加可以布線的面積,多層板用上了更多單或雙面的布線板。用一塊雙面作內層、二塊單面作外層或二塊雙面作內層、二塊單面作外層的印刷線路板,通過定位系統及絕緣粘結材料交替在一起且導電圖形按設計要求進行互連的印刷線路板就成為四層、六層印刷電路板了,也稱為多層印刷線路板。板子的層數并不代表有幾層獨立的布線層,在特殊情況下會加入空層來控制板厚,通常層數都是偶數,并且包含最外側的兩層。大部分的主機板都是4到8層的結構,不過技術上理論可以做到近100層的PCB板。大型的超級計算機大多使用相當多層的主機板,不過因為這類計算機已經可以用許多普通計算機的集群代替,超多層板已經漸漸不被使用了。因為PCB中的各層都緊密的結合,一般不太容易看出實際數目,不過如果仔細觀察主機板,還是可以看出來。
多層板所用的元件多為貼片式元件,其特點是:
1、與集成電路配合使用,可使整機小型化,減少整機重量;
2、提高了布線密度,縮小了元器件的間距,縮短了信號的傳輸路徑;
3、減少了元器件焊接點,降低了故障率,
4、增設了屏蔽層,電路的信號失真減少;
5、引入了接地散熱層,可減少局部過熱現象,提高整機工作的可靠性
印刷電路板的制作工藝過程
印刷電路板的制作非常復雜, 這里以四層印制板為例感受PCB是如何制造出來的。
層壓
這里需要一個新的原料叫做半固化片,是芯板與芯板(PCB層數>4),以及芯板與外層銅箔之間的粘合劑,同時也起到絕緣的作用。
下層的銅箔和兩層半固化片已經提前通過對位孔和下層的鐵板固定好位置,然后將制作好的芯板也放入對位孔中,最后依次將兩層半固化片、一層銅箔和一層承壓的鋁板覆蓋到芯板上。
將被鐵板夾住的PCB板子們放置到支架上,然后送入真空熱壓機中進行層壓。真空熱壓機里的高溫可以融化半固化片里的環氧樹脂,在壓力下將芯板們和銅箔們固定在一起。
層壓完成后,卸掉壓制PCB的上層鐵板。然后將承壓的鋁板拿走,鋁板還起到了隔離不同PCB以及保證PCB外層銅箔光滑的責任。這時拿出來的PCB的兩面都會被一層光滑的銅箔所覆蓋。
鉆孔
要將PCB里4層毫不接觸的銅箔連接在一起,首先要鉆出上下貫通的穿孔來打通PCB,然后把孔壁金屬化來導電。
用X射線鉆孔機機器對內層的芯板進行定位,機器會自動找到并且定位芯板上的孔位,然后給PCB打上定位孔,確保接下來鉆孔時是從孔位的正中央穿過。
將一層鋁板放在打孔機機床上,然后將PCB放在上面。為了提高效率,根據PCB的層數會將1~3個相同的PCB板疊在一起進行穿孔。最后在最上面的PCB上蓋上一層鋁板,上下兩層的鋁板是為了當鉆頭鉆進和鉆出的時候,不會撕裂PCB上的銅箔。
在之前的層壓工序中,融化的環氧樹脂被擠壓到了PCB外面,所以需要進行切除??磕c姶哺鶕CB正確的XY坐標對其外圍進行切割。
孔壁的銅化學沉淀
由于幾乎所有PCB設計都是用穿孔來進行連接的不同層的線路,一個好的連接需要25微米的銅膜在孔壁上。這種厚度的銅膜需要通過電鍍來實現,但是孔壁是由不導電的環氧樹脂和玻璃纖維板組成。
所以第一步就是先在孔壁上堆積一層導電物質,通過化學沉積的方式在整個PCB表面,也包括孔壁上形成1微米的銅膜。整個過程比如化學處理和清洗等都是由機器控制的。
固定PCB
清洗PCB
運送PCB
外層PCB布局轉移
接下來會將外層的PCB布局轉移到銅箔上,過程和之前的內層芯板PCB布局轉移原理差不多,都是利用影印的膠片和感光膜將PCB布局轉移到銅箔上,唯一的不同是將會采用正片做板。
內層PCB布局轉移采用的是減成法,采用的是負片做板。PCB上被固化感光膜覆蓋的為線路,清洗掉沒固化的感光膜,露出的銅箔被蝕刻后,PCB布局線路被固化的感光膜保護而留下。
外層PCB布局轉移采用的是正常法,采用正片做板。PCB上被固化的感光膜覆蓋的為非線路區。清洗掉沒固化的感光膜后進行電鍍。有膜處無法電鍍,而沒有膜處,先鍍上銅后鍍上錫。退膜后進行堿性蝕刻,最后再退錫。線路圖形因為被錫的保護而留在板上。
將PCB用夾子夾住,將銅電鍍上去。之前提到,為了保證孔位有足夠好的導電性,孔壁上電鍍的銅膜必須要有25微米的厚度,所以整套系統將會由電腦自動控制,保證其精確性。
外層PCB蝕刻
接下來由一條完整的自動化流水線完成蝕刻的工序。首先將PCB板上被固化的感光膜清洗掉。然后用強堿清洗掉被其覆蓋的不需要的銅箔。再用退錫液將PCB布局銅箔上的錫鍍層退除。清洗干凈后4層PCB布局就完成了。